Mathematical Structure and Properties of Graphs

nodes, edges connecting Adjacincy List/Matrix $\begin{array}{c}\nG(V, E) & \text{else set} \\
\gamma^{d+1} & \text{vertex set} \\
V = \sum_{i=1}^{n} V_i, V_i, V_i, \dots, V_n \} \\
\vdots & \vdots & \vdots \\
\alpha^{d+1} & \alpha^{d+1} & \alpha^{d+1} \end{array}$ $E = \frac{1}{2}(v_1, v_2), (v_2, v_3), (v_4, v_5)$ $V = \{0, 1, 2, 3, 4, 5, 6\}$ $E(Y^2)$ $E = \frac{1}{2}(0,5), (0,4), (4,5), (1,4), \cdots \frac{1}{3}.$

Degree Revisited

Definition:
degree of u, du Sonnected to u Hedges
leaving out outdegreen, outne indegreez, in ttedges

 $\overline{\Omega}$

• Theorem (Handshaking Theorem): The sum of degrees of the vertices of an undirected graph is twice the number of edges.

$$
\sum_{u \in V} d_u = 2 \cdot |E|
$$

out vortices $\rightarrow d_u$ is even
from $\rightarrow d_u$ is even
for \rightarrow \rightarrow d_u is even

• In a directed graph, the sum of outdegrees of all the vertices, the sum of indegrees of all the vertices and the number of edges are equal.

$$
m_{y} m \le 10^{6}
$$

\n $|E| = m$
\n $DF S \rightarrow O(m + \sum_{u \in N} d_{u}) = O(n^{2})$
\n $\frac{1}{2} \sum_{v \in N} d_{v} = O(n^{2})$

• *Theorem*: In a group of 6 people, there exists a set of three mutual strangers or three mutual friends.

 $|S| = S$ $S \subseteq \{1, 2, \cdots, 6\}$ - choses any vertex $\begin{array}{r} \n\frac{1}{\sqrt{2}} & \text{if } \sqrt{2} & \text{if$ - friende trangers $(v_1, v_2), (v_1, v_2)$ \mathbb{Q} Or of the same colour

at least 2 nodes • *Theorem*: In any graph, there are two vertices having the same degree. $\exists u, v \in V$ such that, $u \neq v$ and $d_u = d_v$ $\int_{\gamma_1} C \{\{0, 1, 2, \ldots, n-1\}\}$ Asseme 7 G (V, E) . 8 t. \circ 0, 1, 2,

Definition: Connected Graphs with no cycles.

• *Theorem:* The follwing definitions are equivalent:

 \circ G is a Tree \leq \sim (G is a connected graph with no cycles \circ G is a connected graph with $|E| = |V| - 1$ \circ G is a graph without cycles with $|E| = |V| - 1$ σ Any two vertices in G have exactly one path connecting them \circ \overline{G} is *Minimally Connected* \circ G is Maximally Acyclic

 $(u,v) \notin \mathsf{F}$ and $u \neq v$

Shortest Path Problem:Lengt for a path $,\rightarrow \omega$ $- - - - 1$ $\omega_{(v_1, v_2)} + \omega_{(v_2 + v_3)}$ $\frac{1}{2}$ dist (u, v) La Lingth of shortest

 $(4,$ $() = 9$

 $dirf: V \rightarrow \mathbb{Z}$

dist (u, u) = 0
- dist (u, v) = dist (v, u) < Graphe. $dist(u,v)+dist(v,\omega) \geq dist(v,\omega)$ $\frac{dist(u, v)}{v} + \frac{dist(v, w)}{dist(u, v)}$ $\mathcal{I}u, v, \omega$ $\underbrace{\begin{matrix} \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix}} \begin{matrix} \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix}} \begin{matrix} \begin{matrix} 0 \\ 0 \end{matrix} \end{matrix}}$

• Something Familiar(?): L'Cannot lift the pen a walk s.t. all edges are covered $\int_1^1 v dv$

• Seven Bridges of $K\ddot{o}nigsberg$

According to folklore, the question arose of whether a citizen could take a walk through the town in such a way that each bridge would be crossed exactly once.

